Search results for "Transport proce"
showing 10 items of 11 documents
Transport properties of nitrogen doped p‐gallium selenide single crystals
1996
Nitrogen doped gallium selenide single crystals are studied through Hall effect and photoluminescence measurements in the temperature ranges from 150 to 700 K and from 30 to 45 K, respectively. The doping effect of nitrogen is established and room temperature resistivities as low as 20 Ω cm are measured. The temperature dependence of the hole concentration can be explained through a single acceptor‐single donor model, the acceptor ionization energy being 210 meV, with a very low compensation rate. The high quality of nitrogen doped GaSe single crystals is confirmed by photoluminescence spectra exhibiting only exciton related peaks. Two phonon scattering mechanisms must be considered in orde…
Particle transport in recirculated liquid metal flows
2008
PurposeAims to present recent activities in numerical modeling of turbulent transport processes in induction crucible furnace.Design/methodology/approach3D large eddy simulation (LES) method was applied for fluid flow modeling in a cylindrical container and transport of 30,000 particles was investigated with Lagrangian approach.FindingsParticle accumulation near the side crucible boundary is determined mainly by the ρp/ρ ratio and according to the presented results. Particle settling velocity is of the same order as characteristic melt flow velocity. Particle concentration homogenization time depends on the internal flow regime. Separate particle tracks introduce very intensive mass exchang…
Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations
2013
Guar gum (GG) and Guar gum/borax (GGb) hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR) and model drug release tests. These three approaches are used to estimate the mesh size (ζ) of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug…
Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation.
2012
Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RFdriven H− ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended opera…
Turbulence structure and implications in exchange processes in high-amplitude vegetated meanders: Experimental investigation
2018
Aquatic plants in rivers interact with flow and exert an important role in maintaining suitable habitat and ecological equilibrium. Understanding turbulence structure in the presence of vegetation is important with respect to environmental processes, such as sediment transport and mixing of transported quantities. Literature indicates that mass and momentum exchanges in the presence of vegetation are strongly influenced by the sequence of coherent structures which form between vegetated and non-vegetated zones. In the present paper we investigate turbulence structure and coherent motion in high-curvature channels with submerged vegetation. The analysis is performed with the aid of detailed …
Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.
2012
We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurab…
A physically based connection between fractional calculus and fractal geometry
2014
We show a relation between fractional calculus and fractals, based only on physical and geometrical considerations. The link has been found in the physical origins of the power-laws, ruling the evolution of many natural phenomena, whose long memory and hereditary properties are mathematically modelled by differential operators of non integer order. Dealing with the relevant example of a viscous fluid seeping through a fractal shaped porous medium, we show that, once a physical phenomenon or process takes place on an underlying fractal geometry, then a power-law naturally comes up in ruling its evolution, whose order is related to the anomalous dimension of such geometry, as well as to the m…
Coupled fluid-flow and magnetic-field simulation of the Riga dynamo experiment
2006
Magnetic fields of planets, stars, and galaxies result from self-excitation in moving electroconducting fluids, also known as the dynamo effect. This phenomenon was recently experimentally confirmed in the Riga dynamo experiment [ A. Gailitis et al., Phys. Rev. Lett. 84, 4365 (2000) ; A. Gailitis et al., Physics of Plasmas 11, 2838 (2004) ], consisting of a helical motion of sodium in a long pipe followed by a straight backflow in a surrounding annular passage, which provided adequate conditions for magnetic-field self-excitation. In this paper, a first attempt to simulate computationally the Riga experiment is reported. The velocity and turbulence fields are modeled by a finite-volume Navi…
Rare events and scaling properties in field-induced anomalous dynamics
2012
We show that, in a broad class of continuous time random walks (CTRW), a small external field can turn diffusion from standard into anomalous. We illustrate our findings in a CTRW with trapping, a prototype of subdiffusion in disordered and glassy materials, and in the L\'evy walk process, which describes superdiffusion within inhomogeneous media. For both models, in the presence of an external field, rare events induce a singular behavior in the originally Gaussian displacements distribution, giving rise to power-law tails. Remarkably, in the subdiffusive CTRW, the combined effect of highly fluctuating waiting times and of a drift yields a non-Gaussian distribution characterized by long sp…
Relaxation of Electron Spin during High-Field Transport in GaAs Bulk
2011
A semiclassical Monte Carlo approach is adopted to study the multivalley spin depolarization of drifting electrons in a doped n-type GaAs bulk semiconductor, in a wide range of lattice temperature ($40<T_L<300$ K) and doping density ($10^{13}<n<10^{16}$cm$^{-3}$). The decay of the initial non-equilibrium spin polarization of the conduction electrons is investigated as a function of the amplitude of the driving static electric field, ranging between 0.1 and 6 kV/cm, by considering the spin dynamics of electrons in both the $\Gamma$ and the upper valleys of the semiconductor. Doping density considerably affects spin relaxation at low temperature and weak intensity of the driving electric fiel…